Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Rev Esp Quimioter ; 2023 Jun 12.
Article in English | MEDLINE | ID: covidwho-20233412

ABSTRACT

OBJECTIVE: Vaccination against SARS-CoV-2 is essential to mitigate the personal, social and global impact of the coronavirus disease (COVID-19) as we move from a pandemic to an endemic phase. Vaccines are now required that offer broad, long-lasting immunological protection from infection in addition to protection from severe illness and hospitalisation. Here we present a review of the evidence base for a new COVID-19 vaccine, PHH-1V (Bimervax®; HIPRA HUMAN HEALTH S.L.U), and the results of an expert consensus. METHODS: The expert committee consisted of Spanish experts in medicine, family medicine, paediatrics, immunology, microbiology, nursing, and veterinary medicine. Consensus was achieved using a 4-phase process consisting of a face-to-face meeting during which the scientific evidence base was reviewed, an online questionnaire to elicit opinions on the value of PHH-1V, a second face-to-face update meeting to discuss the evolution of the epidemiological situation, vaccine programmes and the scientific evidence for PHH-1V and a final face-to-face meeting at which consensus was achieved. RESULTS: The experts agreed that PHH-1V constitutes a valuable novel vaccine for the development of vaccination programmes aimed towards protecting the population from SARS-CoV-2 infection and disease. Consensus was based on evidence of broad-spectrum efficacy against established and emerging SARS-CoV-2 variants, a potent immunological response, and a good safety profile. The physicochemical properties of the PHH-1V formulation facilitate handling and storage appropriate for global uptake. CONCLUSIONS: The physicochemical properties, formulation, immunogenicity and low reactogenic profile of PHH-1V confirm the appropriateness of this new COVID-19 vaccine.

2.
Viruses ; 15(5)2023 04 29.
Article in English | MEDLINE | ID: covidwho-20232812

ABSTRACT

The rapid mutation and spread of SARS-CoV-2 variants recently, especially through the emerging variants Omicron BA5, BF7, XBB and BQ1, necessitate the development of universal vaccines to provide broad spectrum protection against variants. For the SARS-CoV-2 universal recombinant protein vaccines, an effective approach is necessary to design broad-spectrum antigens and combine them with novel adjuvants that can induce high immunogenicity. In this study, we designed a novel targeted retinoic acid-inducible gene-I (RIG-I) receptor 5'triphosphate double strain RNA (5'PPP dsRNA)-based vaccine adjuvant (named AT149) and combined it with the SARS-CoV-2 Delta and Omicron chimeric RBD-dimer recombinant protein (D-O RBD) to immunize mice. The results showed that AT149 activated the P65 NF-κB signaling pathway, which subsequently activated the interferon signal pathway by targeting the RIG-I receptor. The D-O RBD + AT149 and D-O RBD + aluminum hydroxide adjuvant (Al) + AT149 groups showed elevated levels of neutralizing antibodies against the authentic Delta variant, and Omicron subvariants, BA1, BA5, and BF7, pseudovirus BQ1.1, and XBB compared with D-O RBD + Al and D-O RBD + Al + CpG7909/Poly (I:C) groups at 14 d after the second immunization, respectively. In addition, D-O RBD + AT149 and D-O RBD + Al + AT149 groups presented higher levels of the T-cell-secreted IFN-γ immune response. Overall, we designed a novel targeted RIG-I receptor 5'PPP dsRNA-based vaccine adjuvant to significantly improve the immunogenicity and broad spectrum of the SARS-CoV-2 recombinant protein vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Mice , Adjuvants, Vaccine , SARS-CoV-2/genetics , COVID-19/prevention & control , Adjuvants, Immunologic , ABO Blood-Group System , Antibodies, Neutralizing , Recombinant Proteins/genetics , Antibodies, Viral , Spike Glycoprotein, Coronavirus
3.
Drug Delivery System ; 37(5), 2022.
Article in Japanese | ProQuest Central | ID: covidwho-2315963

ABSTRACT

The development of DDS technology has contributed critically to the unprecedentedly rapid requirement for vaccines against COVID-19. LNP-based mRNA vaccines represent a subset of emerging DDS technology. Despite the groundbreaking nature of these vaccines, they are yet to be perfected and as such, new technologies are being developed to optimize these vaccines. This review will focus on exploring one of the modalities of recombinant protein vaccines and will introduce various findings on the enhancement of vaccine efficacy using antigen modification technologies, including VLPs and Fc-fusion proteins, and adjuvant improvements.Alternate :抄録COVID-19に対してかつてない速度でワクチンが普及した背景には、DDS技術の発展が必要不可欠であった。特に、mRNAワクチンにおける脂質ナノ粒子(LNP)の開発は、まさにDDS技術の結集といえよう。一方で、mRNAワクチンを含め、現状のさまざまなワクチンは多くの課題を有しており、より効果的かつ安全なワクチン開発に資する基盤技術の確立が世界的に待望されている。本稿では、ワクチンモダリティの1つである組換えタンパク質ワクチンに焦点を絞り、抗原改変技術からアジュバントの改良に至るまで、ワクチン開発基盤技術の最新知見について紹介する。

4.
Drug Delivery System ; 37(5):402-411, 2022.
Article in Japanese | EMBASE | ID: covidwho-2265819

ABSTRACT

The development of DDS technology has contributed critically to the unprecedentedly rapid requirement for vaccines against COVID-19. LNP-based mRNA vaccines represent a subset of DDS emerging DDS technology. Despite the groundbreaking nature of these vaccines, they are yet to be perfected and as such, new technologies are being developed to optimize these vaccines. This review will focus on exploring one of the modalities of recombinant protein vaccines and will introduce various findings on the enhancement of vaccine efficacy using antigen modification technologies, including VLPs and Fc-fusion proteins, and adjuvant improvements.Copyright © 2022, Japan Society of Drug Delivery System. All rights reserved.

5.
Drug Delivery System ; 37(5):402-411, 2022.
Article in Japanese | EMBASE | ID: covidwho-2265818

ABSTRACT

The development of DDS technology has contributed critically to the unprecedentedly rapid requirement for vaccines against COVID-19. LNP-based mRNA vaccines represent a subset of DDS emerging DDS technology. Despite the groundbreaking nature of these vaccines, they are yet to be perfected and as such, new technologies are being developed to optimize these vaccines. This review will focus on exploring one of the modalities of recombinant protein vaccines and will introduce various findings on the enhancement of vaccine efficacy using antigen modification technologies, including VLPs and Fc-fusion proteins, and adjuvant improvements.Copyright © 2022, Japan Society of Drug Delivery System. All rights reserved.

6.
Drug Delivery System ; 37(5):402-411, 2022.
Article in Japanese | EMBASE | ID: covidwho-2265817

ABSTRACT

The development of DDS technology has contributed critically to the unprecedentedly rapid requirement for vaccines against COVID-19. LNP-based mRNA vaccines represent a subset of DDS emerging DDS technology. Despite the groundbreaking nature of these vaccines, they are yet to be perfected and as such, new technologies are being developed to optimize these vaccines. This review will focus on exploring one of the modalities of recombinant protein vaccines and will introduce various findings on the enhancement of vaccine efficacy using antigen modification technologies, including VLPs and Fc-fusion proteins, and adjuvant improvements.Copyright © 2022, Japan Society of Drug Delivery System. All rights reserved.

7.
Koomesh ; 24(6):727-735, 2022.
Article in Persian | EMBASE | ID: covidwho-2247899

ABSTRACT

Introduction: Covid-19 epidemic results from an infection caused by SARS-CoV2. Evolution-based analyses on the nucleotide sequences show that SARS-CoV2 is a member of the genus Beta-coronaviruses and its genome consists of a single-stranded RNA, encoding 16 proteins. Among the structural proteins, the nucleocapsid is the most abundant protein in virus structure, highly immunogenic, with sequence conservatory. Due to a large number of mutations in the spike protein, the aim of this study was to investigate bioinformatics, expression of nucleocapsid protein and evaluate its immunogenicity as an immunogenic candidate Material(s) and Method(s): B and T cell epitopes of nucleocapsid protein were examined in the IEDB database. The PET28a-N plasmid was transferred to E. coli BL21(DE3) expression host, and IPTG induced recombinant protein expression. The protein was purified using Ni-NTA column affinity chromatography, and the Western blotting method was utilized to confirm it. Finally, mice were immunized with three routes of purified protein. Statistical analysis of the control group injection and test results was carried out by t-test from SPSS software. Result(s): The optimized gene had a Codon adaptation index (CAI) of 0/97 Percentage of codons having high-frequency distribution was improved to 85%. Expression of recombinant protein in E.coli led to the production of BoNT/B-HCC with a molecular weight of 45 kDa. The total yield of purified protein was 43 mg/L. Immunization of mice induced serum antibody response. Statistical analysis showed that the antibody titer ratio was significantly different compared to the control sample and the antibody titer was acceptable up to a dilution of 1.256000 Conclusion(s): According to the present study results, the protein can be used as an immunogenic candidate for developing vaccines against SARS-CoV2 in future research.Copyright © 2022, Semnan University of Medical Sciences. All rights reserved.

8.
Koomesh ; 24(6):727-735, 2022.
Article in Persian | EMBASE | ID: covidwho-2247898

ABSTRACT

Introduction: Covid-19 epidemic results from an infection caused by SARS-CoV2. Evolution-based analyses on the nucleotide sequences show that SARS-CoV2 is a member of the genus Beta-coronaviruses and its genome consists of a single-stranded RNA, encoding 16 proteins. Among the structural proteins, the nucleocapsid is the most abundant protein in virus structure, highly immunogenic, with sequence conservatory. Due to a large number of mutations in the spike protein, the aim of this study was to investigate bioinformatics, expression of nucleocapsid protein and evaluate its immunogenicity as an immunogenic candidate Material(s) and Method(s): B and T cell epitopes of nucleocapsid protein were examined in the IEDB database. The PET28a-N plasmid was transferred to E. coli BL21(DE3) expression host, and IPTG induced recombinant protein expression. The protein was purified using Ni-NTA column affinity chromatography, and the Western blotting method was utilized to confirm it. Finally, mice were immunized with three routes of purified protein. Statistical analysis of the control group injection and test results was carried out by t-test from SPSS software. Result(s): The optimized gene had a Codon adaptation index (CAI) of 0/97 Percentage of codons having high-frequency distribution was improved to 85%. Expression of recombinant protein in E.coli led to the production of BoNT/B-HCC with a molecular weight of 45 kDa. The total yield of purified protein was 43 mg/L. Immunization of mice induced serum antibody response. Statistical analysis showed that the antibody titer ratio was significantly different compared to the control sample and the antibody titer was acceptable up to a dilution of 1.256000 Conclusion(s): According to the present study results, the protein can be used as an immunogenic candidate for developing vaccines against SARS-CoV2 in future research.Copyright © 2022, Semnan University of Medical Sciences. All rights reserved.

9.
Chinese Journal of Microbiology and Immunology (China) ; 42(7):520-526, 2022.
Article in Chinese | EMBASE | ID: covidwho-2263363

ABSTRACT

Objective To effectively express the receptor binding domain (RBD) of SARS-CoV-2 spike protein in Pichia pastoris and to evaluate its immunogenicity. Methods The gene encoding the RBD protein was synthesized and cloned into the pPICZalphaA plasmid. After linearization, the plasmid was transferred and integrated into the genome of Pichia pastoris. The expressed RBD protein in culture supernatant was analyzed by Western blot and Biolayer interferometry. After screening, a single clone expressing the RBD protein was selected. The high-level expression of RBD protein was achieved by optimizing the fermentation process, including the salt concentration adjusting of the medium and induction condition optimization (pH, temperature and duration) . The immunogenicity of the expressed RBD protein was evaluated in a mouse model. Results A single clone with a high expression level of RBD protein was obtained and named RBD-X33. The expression level of RBD protein in the fermentation supernatant reached up to 240 mg / L after optimization of the induction condition (HBSM medium, pH = 6. 5 +/- 0. 3, 22 and 120 h) . In the mouse experiment, the recombinant RBD protein was formulated with Alum + CpG dual adjuvant and injected into mice. The binding IgG antibody levels were up to 2. 7 x 106 tested by ELISA and the neutralizing antibody levels were up to 726. 8 tested by live virus neutralizing antibody assay (prototype) . Conclusions The RBD protein could be efficiently expressed in Pichia pastoris and induce stronger immune response in animals. This study suggested that the recombinant SARS-CoV-2 RBD protein expressed in Pichia pastoris could serve as a candidate antigen in the development of SARS-CoV-2 vaccine.Copyright © 2022 Society of Microbiology and Immunology. All rights reserved.

10.
Hum Vaccin Immunother ; 19(1): 2194189, 2023 12 31.
Article in English | MEDLINE | ID: covidwho-2288673

ABSTRACT

Real-world evidence on the effectiveness of COVID-19 vaccines marketed in China against the Omicron BA.2.2 variant remains scarce. A case-control study was conducted to estimate the vaccine effectiveness (VE) of COVID-19 vaccines marketed in China (inactivated vaccines, an Ad5-nCoV vaccine, and a recombinant protein vaccine). There were 414 cases infected with SARS-CoV-2 and 828 close contacts whose test results were consecutively negative as controls during the outbreak of the Omicron variant in Lu'an City, Anhui Province, China, in April 2022. The overall adjusted VE against Omicron BA.2.2 variant infection in the vaccinated group with any COVID-19 vaccine was 35.0% (95% CI: -9.1-61.3%), whereas the adjusted VE for booster vaccination was 51.6% (95% CI: 15.2-72.4%). Subgroup analysis showed that the overall adjusted VE of the Ad5-nCoV vaccine (65.8%, 95% CI: 12.8-86.6%) during the outbreak while any dose of inactivated vaccines and recombinant protein vaccine offered no protection. The adjusted VE of three-dose inactivated vaccines was 48.0% (95% CI: 8.0-70.6%), and the two-dose Ad5-nCoV vaccine was 62.9% (95% CI: 1.8-86%). There is no protection from a three-dose recombinant protein vaccine. COVID-19 vaccines offered 46.8% (95% CI: 9.5-68.7%) protection from infection within six months. There were statistically significant differences between the VEs of heterologous booster (VE = 76.4%, 95% CI: 14.3-93.5%) and homologous booster vaccination (VE = 51.8%, 95% CI: 9.6-74.3%) (P = .036). Booster vaccination of COVID-19 vaccines offered more protection than full vaccination. A booster vaccination campaign for a booster dose after three doses of a recombinant protein vaccine must be urgently conducted.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Case-Control Studies , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , China/epidemiology , Disease Outbreaks/prevention & control , Recombinant Proteins
11.
Chinese Journal of Microbiology and Immunology (China) ; 42(7):520-526, 2022.
Article in Chinese | Scopus | ID: covidwho-2055465

ABSTRACT

Objective To effectively express the receptor binding domain (RBD) of SARS-CoV-2 spike protein in Pichia pastoris and to evaluate its immunogenicity. Methods The gene encoding the RBD protein was synthesized and cloned into the pPICZαA plasmid. After linearization, the plasmid was transferred and integrated into the genome of Pichia pastoris. The expressed RBD protein in culture supernatant was analyzed by Western blot and Biolayer interferometry. After screening, a single clone expressing the RBD protein was selected. The high-level expression of RBD protein was achieved by optimizing the fermentation process, including the salt concentration adjusting of the medium and induction condition optimization (pH, temperature and duration) . The immunogenicity of the expressed RBD protein was evaluated in a mouse model. Results A single clone with a high expression level of RBD protein was obtained and named RBD-X33. The expression level of RBD protein in the fermentation supernatant reached up to 240 mg / L after optimization of the induction condition (HBSM medium, pH = 6. 5 ± 0. 3, 22℃ and 120 h) . In the mouse experiment, the recombinant RBD protein was formulated with Alum + CpG dual adjuvant and injected into mice. The binding IgG antibody levels were up to 2. 7 × 106 tested by ELISA and the neutralizing antibody levels were up to 726. 8 tested by live virus neutralizing antibody assay (prototype) . Conclusions The RBD protein could be efficiently expressed in Pichia pastoris and induce stronger immune response in animals. This study suggested that the recombinant SARS-CoV-2 RBD protein expressed in Pichia pastoris could serve as a candidate antigen in the development of SARS-CoV-2 vaccine. © 2022 Society of Microbiology and Immunology. All rights reserved.

12.
Viruses ; 14(9)2022 08 24.
Article in English | MEDLINE | ID: covidwho-1997806

ABSTRACT

The research and development (R&D) of novel adjuvants is an effective measure for improving the immunogenicity of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recombinant protein vaccine. Toward this end, we designed a novel single-stranded RNA-based adjuvant, L2, from the SARS-CoV-2 prototype genome. L2 could initiate retinoic acid-inducible gene-I signaling pathways to effectively activate the innate immunity. ZF2001, an aluminum hydroxide (Al) adjuvanted SARS-CoV-2 recombinant receptor binding domain (RBD) subunit vaccine with emergency use authorization in China, was used for comparison. L2, with adjuvant compatibility with RBD, elevated the antibody response to a level more than that achieved with Al, CpG 7909, or poly(I:C) as adjuvants in mice. L2 plus Al with composite adjuvant compatibility with RBD markedly improved the immunogenicity of ZF2001; in particular, neutralizing antibody titers increased by about 44-fold for Omicron, and the combination also induced higher levels of antibodies than CpG 7909/poly(I:C) plus Al in mice. Moreover, L2 and L2 plus Al effectively improved the Th1 immune response, rather than the Th2 immune response. Taken together, L2, used as an adjuvant, enhanced the immune response of the SARS-CoV-2 recombinant RBD protein vaccine in mice. These findings should provide a basis for the R&D of novel RNA-based adjuvants.


Subject(s)
COVID-19 , Viral Vaccines , Adjuvants, Immunologic , Aluminum Hydroxide , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Mice , Mice, Inbred BALB C , RNA , Recombinant Proteins/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Tretinoin , Vaccines, Subunit/genetics , Vaccines, Synthetic/genetics
13.
EClinicalMedicine ; 51: 101569, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1956125

ABSTRACT

Background: Vaccination has helped to mitigate the COVID-19 pandemic. Ten traditional and novel vaccines have been listed by the World Health Organization for emergency use. Additional alternative approaches may better address ongoing vaccination globally, where there remains an inequity in vaccine distribution. GBP510 is a recombinant protein vaccine, which consists of self-assembling, two-component nanoparticles, displaying the receptor-binding domain (RBD) in a highly immunogenic array. Methods: This randomised, placebo-controlled, observer-blinded phase 1/2 study was conducted to evaluate the safety and immunogenicity of GBP510 (2-doses at a 28-day interval) adjuvanted with or without AS03 in adults aged 19-85 years at 14 hospital sites in Korea. This study was consisted of two stages (stage I, healthy adults aged 19-55 years; stage II, 240 healthy adults aged 19-85 years). Healthy participants who did not previously receive any vaccine within 4 weeks (2 weeks for flu vaccine) prior to the study, no history of COVID-19 vaccination/medication, and were naïve to SARS-CoV-2 infection at screening were eligible for the study enrollment. Participants were block-randomized in a 2:2:1 ratio to receive 2 doses of 10 µg GBP510 adjuvanted with AS03 (group 1), 10 µg unadjuvanted GBP510 (group 2) or placebo intramuscularly in stage I, while they were block-randomized in a 2:2:1:1 ratio to receive 10 µg GBP510 adjuvanted with AS03 (group 1), 25 µg GBP510 adjuvanted with AS03 (group 3), 25 µg unadjuvanted GBP510 (group 4) or placebo in stage II. The primary safety outcomes were solicited and unsolicited adverse events, while primary immunogenicity outcomes included anti-SARS-CoV-2 RBD IgG antibodies; neutralizing antibody responses; and T-cell immune responses. Safety assessment included all participants who received at least 1 dose of study intervention (safety set). Immunogenicity assessment included all participants who completed the vaccination schedule and had valid immunogenicity assessment results without any major protocol deviations (per-protocol set). This study was registered with ClinicalTrials.gov (NCT04750343). Findings: Of 328 participants who were enrolled between February 1 and May 28, 2021, 327 participants received at least 1 dose of vaccine. Each received either 10 µg GBP510 adjuvanted with AS03 (Group 1, n = 101), 10 µg unadjuvanted GBP510 (Group 2, n = 10), 25 µg GBP510 adjuvanted with AS03 (Group 3, n = 104), 25 µg unadjuvanted GBP510 (Group 4, n = 51), or placebo (n = 61). Higher reactogenicity was observed in the GBP510 adjuvanted with AS03 groups compared to the non-adjuvanted and placebo groups. The most frequently reported solicited local adverse event (AE) was injection site pain after any vaccination: (88·1% in group 1; 50·0% in group 2; 92·3% in group 3; 66·7% in group 4). Fatigue and myalgia were two most frequently reported systemic AEs and more frequently reported in GBP510 adjuvanted with AS03 recipients (79·2% and 78·2% in group 1; 75·0% and 79·8% in group 3, respectively) than in the unadjuvanted vaccine recipients (40·0% and of 40·0% in group 2; 60·8% and 47·1% in group 4) after any vaccination. Reactogenicity was higher post-dose 2 compared to post-dose 1, particularly for systemic AEs. The geometric mean concentrations of anti-SARS-CoV-2-RBD IgG antibody reached 2163·6/2599·2 BAU/mL in GBP510 adjuvanted with AS03 recipients (10 µg/25 µg) by 14 days after the second dose. Two-dose vaccination of 10 µg or 25 µg GBP510 adjuvanted with AS03 induced high titres of neutralizing antibody via pseudovirus (1369·0/1431·5 IU/mL) and wild-type virus (949·8/861·0 IU/mL) assay. Interpretation: GBP510 adjuvanted with AS03 was well tolerated and highly immunogenic. These results support further development of the vaccine candidate, which is currently being evaluated in Phase 3. Funding: This work was supported, in whole or in part, by funding from CEPI and the Bill & Melinda Gates Foundation Investment ID OPP1148601. The Bill & Melinda Gates Foundation supported this project for the generation of IND-enabling data and CEPI supported this clinical study.

14.
ACS Infect Dis ; 8(7): 1367-1375, 2022 07 08.
Article in English | MEDLINE | ID: covidwho-1908085

ABSTRACT

With the global pandemic of the new coronavirus disease (COVID-19), a safe, effective, and affordable mass-produced vaccine remains the current focus of research. Herein, we designed an adjuvant-protein conjugate vaccine candidate, in which the TLR7 agonist (TLR7a) was conjugated to S1 subunit of SARS-CoV-2 spike protein, and systematically compared the effect of different numbers of built-in TLR7a on the immune activity for the first time. As the number of built-in TLR7a increased, a bell-shaped reaction was observed in three TLR7a-S1 conjugates, with TLR7a(10)-S1 (with around 10 built-in adjuvant molecules on one S1 protein) eliciting a more potent immune response than TLR7a(2)-S1 and TLR7a(18)-S1. This adjuvant-protein conjugate strategy allows the built-in adjuvant to provide cluster effects and prevents systemic toxicity and facilitates the co-delivery of adjuvant and antigen. Vaccination of mice with TLR7a(10)-S1 triggered a potent humoral and cellular immunity and a balanced Th1/Th2 immune response. Meanwhile, the vaccine induces effective neutralizing antibodies against SARS-CoV-2 and all variants of concern (B.1.1.7/alpha, B.1.351/beta, P.1/gamma, B.1.617.2/delta, and B.1.1.529/omicron). It is expected that the adjuvant-protein conjugate strategy has great potential to construct a potent recombinant protein vaccine candidate against various types of diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Adjuvants, Immunologic/pharmacology , Adjuvants, Pharmaceutic , Animals , COVID-19/prevention & control , Humans , Mice , Mice, Inbred BALB C , Spike Glycoprotein, Coronavirus , Toll-Like Receptor 7 , Vaccines, Conjugate
15.
Vaccine ; 40(31): 4231-4241, 2022 07 29.
Article in English | MEDLINE | ID: covidwho-1882604

ABSTRACT

The vaccine S-268019-b is a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-protein vaccine consisting of full-length recombinant SARS-CoV-2 S-protein (S-910823) as antigen, mixed with the squalene-based adjuvant A-910823. The current study evaluated the immunogenicity of S-268019-b using various doses of S-910823 and its vaccine efficacy against SARS-CoV-2 challenge in cynomolgus monkeys. The different doses of S-910823 combined with A-910823 were intramuscularly administered twice at a 3-week interval. Two weeks after the second dosing, dose-dependent humoral immune responses were observed with neutralizing antibody titers being comparable to that of human convalescent plasma. Pseudoviruses harboring S proteins from Beta and Gamma SARS-CoV-2 variants displayed approximately 3- to 4-fold reduced sensitivity to neutralizing antibodies induced after two vaccine doses compared with that against ancestral viruses, whereas neutralizing antibody titers were reduced >14-fold against the Omicron variant. Cellular immunity was also induced with a relative Th1 polarized response. No adverse clinical signs or weight loss associated with the vaccine were observed, suggesting safety of the vaccine in cynomolgus monkeys. Immunization with 10 µg of S-910823 with A-910823 demonstrated protective efficacy against SARS-CoV-2 challenge according to genomic and subgenomic viral RNA transcript levels in nasopharyngeal, throat, and rectal swab specimens. Pathological analysis revealed no detectable vaccine-dependent enhancement of disease in the lungs of challenged vaccinated monkeys. The current findings provide fundamental information regarding vaccine doses for human trials and support the development of S-268019-b as a safe and effective vaccine for controlling the current pandemic, as well as general protection against SARS-CoV-2 moving forward.


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19/therapy , Immunization, Passive , Immunogenicity, Vaccine , Macaca fascicularis , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19 Serotherapy
16.
Vaccines (Basel) ; 10(2)2022 Feb 03.
Article in English | MEDLINE | ID: covidwho-1690150

ABSTRACT

SARS-CoV-2 vaccine production has taken us by storm. We aim to fill in the history of concepts and the work of pioneers and provide a framework of strategies employing structural vaccinology. Cryo-electron microscopy became crucial in providing three-dimensional (3D) structures and creating candidates eliciting T and B cell-mediated immunity. It also determined structural changes in the emerging mutants in order to design new constructs that can be easily, quickly and safely added to the vaccines. The full-length spike (S) protein, the S1 subunit and its receptor binding domain (RBD) of the virus are the best candidates. The vaccine development to cease this COVID-19 pandemic sets a milestone for the pan-coronavirus vaccine's designing and manufacturing. By employing structural vaccinology, we propose that the mRNA and the protein sequences of the currently approved vaccines should be modified rapidly to keep up with the more infectious new variants.

17.
Emerg Microbes Infect ; 10(1): 1589-1597, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1354261

ABSTRACT

Safe and effective vaccines are still urgently needed to cope with the ongoing COVID-19 pandemic. Recently, we developed a recombinant COVID-19 vaccine (V-01) containing fusion protein (IFN-PADRE-RBD-Fc dimer) as antigen verified to induce protective immunity against SARS-CoV-2 challenge in pre-clinical study, which supported progression to Phase I clinical trials in humans. A Randomized, double-blind, placebo-controlled Phase I clinical trial was initiated at the Guangdong Provincial Center for Disease Control and Prevention (Gaozhou, China) in February 2021. Healthy adults aged between 18 and 59 years and over 60 years were sequentially enrolled and randomly allocated into three subgroups (1:1:1) either to receive the vaccine (10, 25, and 50 µg) or placebo (V-01: Placebo = 4:1) intramuscularly with a 21-day interval by a sentinel and dose escalation design. The data showed a promising safety profile with approximately 25% vaccine-related overall adverse events (AEs) within 30 days and no grade 3 or worse AEs. Besides, V-01 provoked rapid and strong immune responses, elicited substantially high-titre neutralizing antibodies and anti-RBD IgG peaked at day 35 or 49 after first dose, presented with encouraging immunogenicity at low dose (10 µg) subgroup and elderly participants, which showed great promise to be used as all-aged (18 and above) vaccine against COVID-19. Taken together, our preliminary findings indicate that V-01 is safe and well tolerated, capable of inducing rapid and strong immune responses, and warrants further testing in Phase II/III clinical trials.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , Interferons/immunology , Adolescent , Adult , Aged , Antibodies, Neutralizing/blood , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , China , Double-Blind Method , Female , Humans , Immunoglobulin G/blood , Interferons/administration & dosage , Interferons/genetics , Male , Middle Aged , Placebos , Vaccination/adverse effects , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Young Adult
18.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 37(3): 373-379, 2020 Jun 25.
Article in Chinese | MEDLINE | ID: covidwho-643749

ABSTRACT

As the COVID-19 pandemic is intensifying globally, more and more people are pinning their hopes on the development of vaccines. At present, there are many research teams who have adopted different vaccine technology routes to develop 2019-nCoV vaccines. This article reviews and analyzes the current development and research status of 2019-nCoV vaccines in different routes, and explores their possible development in the future.


Subject(s)
Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/therapeutic use , Betacoronavirus , COVID-19 , COVID-19 Vaccines , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL